Monday, 15 Dec 2025
Subscribe
logo
  • Global
  • AI
  • Cloud Computing
  • Edge Computing
  • Security
  • Investment
  • Sustainability
  • More
    • Colocation
    • Quantum Computing
    • Regulation & Policy
    • Infrastructure
    • Power & Cooling
    • Design
    • Innovations
    • Blog
Font ResizerAa
Data Center NewsData Center News
Search
  • Global
  • AI
  • Cloud Computing
  • Edge Computing
  • Security
  • Investment
  • Sustainability
  • More
    • Colocation
    • Quantum Computing
    • Regulation & Policy
    • Infrastructure
    • Power & Cooling
    • Design
    • Innovations
    • Blog
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Data Center News > Blog > AI > Researchers find you don’t need a ton of data to train LLMs for reasoning tasks
AI

Researchers find you don’t need a ton of data to train LLMs for reasoning tasks

Last updated: February 15, 2025 7:03 am
Published February 15, 2025
Share
Researchers find you don’t need a ton of data to train LLMs for reasoning tasks
SHARE

Be a part of our each day and weekly newsletters for the most recent updates and unique content material on industry-leading AI protection. Study Extra


Giant language fashions (LLMs) can be taught complicated reasoning duties with out counting on massive datasets, in line with a new study by researchers at Shanghai Jiao Tong College. Their findings present that with only a small batch of well-curated examples, you may prepare an LLM for duties that have been thought to require tens of hundreds of coaching cases. 

This effectivity is as a result of inherent information that trendy LLMs acquire throughout the pre-training part. With new coaching strategies changing into extra data- and compute-efficient, enterprises would possibly be capable of create custom-made fashions with out requiring entry to the assets of huge AI labs.

Much less is extra (LIMO)

Of their examine, the researchers problem the idea that you just want massive quantities of knowledge to coach LLMs for reasoning duties. They introduce the idea of “much less is extra” (LIMO). Their work builds on prime of previous research that confirmed LLMs could possibly be aligned with human preferences with just a few examples.

Much less is Extra (LIMO) for reasoning (supply: arXiv)

Of their experiments, they demonstrated that they may create a LIMO dataset for complicated mathematical reasoning duties with just a few hundred coaching examples. An LLM fine-tuned on the dataset was capable of create complicated chain-of-thought (CoT) reasoning chains that enabled it to perform the duties at a really excessive success charge.

For instance, a Qwen2.5-32B-Instruct mannequin fine-tuned on 817 coaching examples chosen based mostly on LIMO reached 57.1% accuracy on the extremely difficult AIME benchmark and 94.8% on MATH, outperforming fashions that have been educated on 100 occasions extra examples. It additionally scored increased on the benchmarks than reasoning fashions similar to QwQ-32B-Preview (a model of the Qwen mannequin that has been educated for reasoning) and OpenAI o1-preview, each of which have been educated with bigger knowledge and compute assets.

See also  Direct Liquid Cooling (DLC) solutions for AI next-generation data centres

Furthermore, LIMO-trained fashions generalize to examples drastically totally different from their coaching knowledge. For instance, on the OlympiadBench scientific benchmark, the LIMO mannequin outperformed QwQ-32B-Preview, and on the difficult GPQA benchmark, it achieved 66.7% accuracy, near OpenAI-o1-preview’s main rating of 73.3%.

What does it imply for enterprise AI?

Customizing LLMs is a beautiful use case for enterprise purposes. Due to strategies similar to retrieval-augmented era (RAG) and in-context studying, LLMs could be custom-made to make use of bespoke knowledge or carry out new duties with out the necessity for costly fine-tuning. 

Nevertheless, reasoning duties typically require coaching and fine-tuning LLMs. The widely-held perception has been that such duties require massive volumes of coaching examples with extremely detailed reasoning chains and options. Creating such datasets is sluggish and impractical for a lot of purposes and firms.

Extra just lately, researchers have proven that pure reinforcement studying approaches can allow fashions to coach themselves for reasoning duties by producing many options and selecting those that work greatest. Whereas this strategy requires much less guide effort, it nonetheless calls for costly compute assets which can be past the attain of many enterprises.

However, crafting just a few hundred examples is an endeavor that many corporations can deal with, bringing specialised reasoning fashions throughout the attain of a wider vary of organizations.

“This discovery has profound implications for synthetic intelligence analysis: It means that even competition-level complicated reasoning skills could be successfully elicited by means of minimal however curated coaching samples,” the researchers write.

Why LIMO works

Of their experiments, the researchers determine two key the explanation why LLMs can be taught complicated reasoning duties with fewer examples.

See also  Navigating the AI goldrush - Data Centre Review

First, state-of-the-art basis fashions have been educated on a really great amount of mathematical content material and code throughout pre-training. Because of this these LLMs already possess wealthy reasoning information of their parameters that may be activated by means of carefully-crafted examples.

Second, new post-training strategies have proven that permitting fashions to generate prolonged reasoning chains considerably improves their reasoning capability. In essence, giving the fashions extra time to “assume” permits them to unpack and apply their pre-trained information extra successfully.

“We hypothesize that profitable reasoning emerges from the synergy of those two elements: wealthy pre-trained information and enough computational assets at inference time,” the researchers write. “These developments collectively counsel a hanging risk: If fashions possess wealthy reasoning information and are given sufficient computational house, then activating their reasoning capabilities might require solely a small variety of high-quality coaching samples that encourage prolonged deliberation, moderately than huge fine-tuning datasets.”

Selecting extra complicated issues to incorporate within the coaching dataset can have a major impact on the educated mannequin’s accuracy in reasoning duties (supply: arXiv)

In response to the researchers’ findings, creating helpful LIMO datasets hinges on choosing the proper issues and options. Information curators ought to prioritize difficult issues that require complicated reasoning chains, numerous thought processes and information integration. The issues must also deviate from the mannequin’s coaching distribution to encourage new reasoning approaches and pressure it towards generalization.

Accordingly, options needs to be clearly and well-organized, with the reasoning steps tailored to the complexity of the issue. Excessive-quality options must also present strategic instructional help by progressively constructing understanding by means of rigorously structured explanations. 

See also  EdgeConneX and Lambda plan 30MW AI data centers in Chicago and Atlanta

“By specializing in a minimal but meticulously curated set of reasoning chains, we embody the core precept of LIMO: Excessive-quality demonstrations, moderately than sheer knowledge quantity, are key to unlocking complicated reasoning capabilities,” the researchers write.

The researchers have released the code and data used to coach the LIMO fashions of their experiments. Sooner or later, they plan to broaden the idea to different domains and purposes.


Source link
TAGGED: data, Dont, find, LLMs, reasoning, researchers, tasks, ton, train
Share This Article
Twitter Email Copy Link Print
Previous Article Pharos Raises $5M in Seed Funding BEKhealth Raises $4M in Funding
Next Article mattoboard Mattoboard Raises $2M in Seed Funding
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Stay ahead with real-time updates on the latest events, trends.
FacebookLike
TwitterFollow
InstagramFollow
YoutubeSubscribe
LinkedInFollow
MediumFollow
- Advertisement -
Ad image

Popular Posts

Data Center News Roundup: Industry Mobilizes for Brazil Flood Recovery | DCN

With knowledge middle information transferring quicker than ever, we need to make it simple for…

May 10, 2024

Securitas to deploy AI mm-wave screening in data centres

Securitas has struck a strategic partnership with Rohde & Schwarz to combine millimetre-wave folks screening…

September 29, 2025

Sam Altman reinstated to OpenAI board after investigation clears him of wrongdoing

Be a part of leaders in Boston on March 27 for an unique night time…

March 9, 2024

The Hidden Costs of AI: Securing Inference in an Age of Attacks

This text is a part of VentureBeat’s particular subject, “The Actual Value of AI: Efficiency,…

July 6, 2025

APAC Data Center Boom Faces Sustainability Challenge

The Asia-Pacific (APAC) area is experiencing an information middle development increase that mirrors the explosive…

November 3, 2025

You Might Also Like

US$905B bet on agentic future
AI

US$905B bet on agentic future

By saad
New report compares big tech's approach to nature in data centre plans
Colocation

New report compares big tech’s approach to nature in data centre plans

By saad
Is the data centre ‘skills gap’ the wrong question?
Global Market

Is the data centre ‘skills gap’ the wrong question?

By saad
Build vs buy is dead — AI just killed it
AI

Build vs buy is dead — AI just killed it

By saad
Data Center News
Facebook Twitter Youtube Instagram Linkedin

About US

Data Center News: Stay informed on the pulse of data centers. Latest updates, tech trends, and industry insights—all in one place. Elevate your data infrastructure knowledge.

Top Categories
  • Global Market
  • Infrastructure
  • Innovations
  • Investments
Usefull Links
  • Home
  • Contact
  • Privacy Policy
  • Terms & Conditions

© 2024 – datacenternews.tech – All rights reserved

Welcome Back!

Sign in to your account

Lost your password?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
You can revoke your consent any time using the Revoke consent button.