Monday, 15 Dec 2025
Subscribe
logo
  • Global
  • AI
  • Cloud Computing
  • Edge Computing
  • Security
  • Investment
  • Sustainability
  • More
    • Colocation
    • Quantum Computing
    • Regulation & Policy
    • Infrastructure
    • Power & Cooling
    • Design
    • Innovations
    • Blog
Font ResizerAa
Data Center NewsData Center News
Search
  • Global
  • AI
  • Cloud Computing
  • Edge Computing
  • Security
  • Investment
  • Sustainability
  • More
    • Colocation
    • Quantum Computing
    • Regulation & Policy
    • Infrastructure
    • Power & Cooling
    • Design
    • Innovations
    • Blog
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Data Center News > Blog > Quantum Computing > IBM Is Planning to Build Its First Fault-Tolerant Quantum Computer by 2029
Quantum Computing

IBM Is Planning to Build Its First Fault-Tolerant Quantum Computer by 2029

Last updated: January 30, 2024 1:14 am
Published January 30, 2024
Share
IBM Is Planning to Build Its First Fault-Tolerant Quantum Computer by 2029
SHARE

This week, IBM announced a pair of shiny new quantum computers.

The company’s Condor processor is the first quantum chip of its kind with over 1,000 qubits, a feat that would have made big headlines just a few years ago. But earlier this year, a startup, Atom Computing, unveiled a 1,180-qubit quantum computer using a different approach. And although IBM says Condor demonstrates it can reliably produce high-quality qubits at scale, it’ll likely be the largest single chip the company makes until sometime next decade.

Instead of growing the number of qubits crammed onto each chip, IBM will focus on getting the most out of the qubits it has. In this respect, the second chip announced, Heron, is the future.

Though Heron has fewer qubits than Condor—just 133—it’s significantly faster and less error-prone. The company plans to combine several of these smaller chips into increasingly more powerful systems, a bit like the multicore processors powering smartphones. The first of these, System Two, also announced this week, contains three linked Condor chips.

IBM also updated its quantum roadmap, a timeline of key engineering milestones, through 2033. Notably, the company is aiming to complete a fault-tolerant quantum computer by 2029. The machine won’t be large enough to run complex quantum algorithms, like the one expected to one day break standard encryption. Still, it’s a bold promise.

Quantum Correction

Practical quantum computers will be able to tackle problems that can’t be solved using classical computers. But today’s systems are far too small and error-ridden to realize that dream. To get there, engineers are working on a solution called error-correction.

A qubit is the fundamental unit of a quantum computer. In your laptop, the basic unit of information is a 1 or 0 represented by a transistor that’s either on or off. In a quantum computer, the unit of information is 1, 0, or—thanks to quantum weirdness—some combination of the two. The physical component can be an atom, electron, or tiny superconducting loop of wire.

See also  Novel system turns quantum bottlenecks into breakthroughs

Opting for the latter, IBM makes its quantum computers by cooling loops of wire, or transmons, to temperatures near absolute zero and placing them into quantum states. Here’s the problem. Qubits are incredibly fragile, easily falling out of these quantum states throughout a calculation. This introduces errors that make today’s machines unreliable.

One way to solve this problem is to minimize errors. IBM’s made progress here. Heron uses some new hardware to significantly speed up how quickly the system places pairs of qubits into quantum states—an operation known as a “gate”—limiting the number of errors that crop up and spread to neighboring qubits (researchers call this “crosstalk”).

“It’s a beautiful device,” Gambetta told Ars Technica. “It’s five times better than the previous devices, the errors are way less, [and] crosstalk can’t really be measured.”

But you can’t totally eliminate errors. In the future, redundancy will also be key.

By spreading information between a group of qubits, you can reduce the impact of any one error and also check for and correct errors in the group. Because it takes multiple physical qubits to form one of these error-corrected “logical qubits,” you need an awful lot of them to complete useful calculations. This is why scale matters.

Software can also help. IBM is already employing a technique called error mitigation, announced earlier this year, in which it simulates likely errors and subtracts them from calculations. They’ve also identified a method of error-correction that reduces the number of physical qubits in a logical qubit by nearly an order of magnitude. But all this will require advanced forms of connectivity between qubits, which could be the biggest challenge ahead.

See also  Atom Computing Says Its New Quantum Computer Has Over 1,000 Qubits

“You’re going to have to tie them together,” Dario Gil, senior vice president and director of research at IBM, told Reuters. “You’re going to have to do many of these things together to be practical about it. Because if not, it’s just a paper exercise.”

On the Road

Something that makes IBM unique in the industry is that it publishes a roadmap looking a decade into the future.

This may seem risky, but to date, they’ve stuck to it. Alongside the Condor and Heron news, IBM also posted an updated version of its roadmap.

Next year, they’ll release an upgraded version of Heron capable of 5,000 gate operations. After Heron comes Flamingo. They’ll link seven of these Flamingo chips into a single system with over 1,000 qubits. They also plan to grow Flamingo’s gate count by roughly 50 percent a year until it hits 15,000 in 2028. In parallel, the company will work on error-correction, beginning with memory, then moving on to communication and gates.

All this will culminate in a 200-qubit, fault-tolerant chip called Starling in 2029 and a leap in gate operations to 100 million. Starling will give way to the bigger Blue Jay in 2033.

Heisenberg’s Horse Race

Though it may be the most open about them, IBM isn’t alone in its ambitions.

Google is pursuing the same type of quantum computer and has been focused on error-correction over scaling for a few years. Then there are other kinds of quantum computers entirely—some use charged ions as qubits while others use photons, electrons, or like Atom Computing, neutral atoms. Each approach has its tradeoffs.

See also  Quantum breakthrough: World's purest silicon pave towards powerful quantum computers

“When it comes down to it, there’s a simple set of metrics for you to compare the performance of the quantum processors,” Jerry Chow, director of quantum systems at IBM, told the Verge. “It’s scale: what number of qubits can you get to and build reliably? Quality: how long do those qubits live for you to perform operations and calculations on? And speed: how quickly can you actually run executions and problems through these quantum processors?”

Atom Computing favors neutral atoms because they’re identical—eliminating the possibility of manufacturing flaws—can be controlled wirelessly, and operate at room temperature. Chow agrees there are interesting things happening in the nuetral atom space but speed is a drawback. “It comes down to that speed,” he said. “Anytime you have these actual atomic items, either an ion or an atom, your clock rates end up hurting you.”

The truth is the race isn’t yet won, and won’t be for awhile yet. New advances or unforeseen challenges could rework the landscape. But Chow said the company’s confidence in its approach is what allows them to look ahead 10 years.

“And to me it’s more that there are going to be innovations within that are going to continue to compound over those 10 years, that might make it even more attractive as time goes on. And that’s just the nature of technology,” he said.

Image Credit: IBM

Source link

Contents
Quantum CorrectionOn the RoadHeisenberg’s Horse Race
TAGGED: Build, Computer, FaultTolerant, IBM, Planning, Quantum
Share This Article
Twitter Email Copy Link Print
Previous Article LLMs, ChatGPT, Generative AI Juniper brings AI to data center operations
Next Article Construction worker and blue sky    147256163 Docker Build Cloud aims to accelerate Docker builds
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Stay ahead with real-time updates on the latest events, trends.
FacebookLike
TwitterFollow
InstagramFollow
YoutubeSubscribe
LinkedInFollow
MediumFollow
- Advertisement -
Ad image

Popular Posts

How much venture capital did Mighty raise? A startup with a mission to level the playing field

In court docket, the little man usually finally ends up on the brief finish of…

March 14, 2025

Arm backs big data center ambitions with migration tools

“Our objective is to make sure builders have complete help and entry to in-depth sources…

April 10, 2025

How LeapXpert uses AI to bring order and oversight to business messaging

It’s now not information that AI is remodeling how individuals talk at work. The dangerous…

October 31, 2025

Forget data labeling: Tencent’s R-Zero shows how LLMs can train themselves

Need smarter insights in your inbox? Join our weekly newsletters to get solely what issues…

September 1, 2025

Scale Computing and Veeam Partner to Bring Enterprise-Class Data Protection to Scale Computing Platform

Scale Computing, an edge computing options supplier, and Veeam Software program introduced they'll  combine Veeam‘s…

April 23, 2025

You Might Also Like

Build vs buy is dead — AI just killed it
AI

Build vs buy is dead — AI just killed it

By saad
How to build true resilience into a data centre network
Global Market

How to build true resilience into a data centre network

By saad
Veritone and Armada build edge-to-enterprise pipeline for situational intelligence
Edge Computing

Veritone and Armada build edge-to-enterprise pipeline for situational intelligence

By saad
IBM moves to buy Confluent in an $11 billion cloud and AI deal
Cloud Computing

IBM moves to buy Confluent in an $11 billion cloud and AI deal

By saad
Data Center News
Facebook Twitter Youtube Instagram Linkedin

About US

Data Center News: Stay informed on the pulse of data centers. Latest updates, tech trends, and industry insights—all in one place. Elevate your data infrastructure knowledge.

Top Categories
  • Global Market
  • Infrastructure
  • Innovations
  • Investments
Usefull Links
  • Home
  • Contact
  • Privacy Policy
  • Terms & Conditions

© 2024 – datacenternews.tech – All rights reserved

Welcome Back!

Sign in to your account

Lost your password?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
You can revoke your consent any time using the Revoke consent button.