Sunday, 14 Dec 2025
Subscribe
logo
  • Global
  • AI
  • Cloud Computing
  • Edge Computing
  • Security
  • Investment
  • Sustainability
  • More
    • Colocation
    • Quantum Computing
    • Regulation & Policy
    • Infrastructure
    • Power & Cooling
    • Design
    • Innovations
    • Blog
Font ResizerAa
Data Center NewsData Center News
Search
  • Global
  • AI
  • Cloud Computing
  • Edge Computing
  • Security
  • Investment
  • Sustainability
  • More
    • Colocation
    • Quantum Computing
    • Regulation & Policy
    • Infrastructure
    • Power & Cooling
    • Design
    • Innovations
    • Blog
Have an existing account? Sign In
Follow US
© 2022 Foxiz News Network. Ruby Design Company. All Rights Reserved.
Data Center News > Blog > Cloud Computing > Do you need GPUs for generative AI systems?
Cloud Computing

Do you need GPUs for generative AI systems?

Last updated: January 26, 2024 6:56 pm
Published January 26, 2024
Share
Do you need GPUs for generative AI systems?
SHARE

Often, I catch on to trends by looking for common patterns in the questions reporters ask me. In many instances, they are much more in touch with the market than I am, and they are a good data point. Take the calls that I’ve been getting about what problems may arise if there is a graphics processing unit (GPU) shortage.

First, if that does happen, it wouldn’t likely last long. Second, other viable options should be considered. Of course, the angle is doom and gloom, with the fear that businesses won’t be able to take advantage of the generative AI revolution if they can’t get these processors, either for use with on-premises systems or in the cloud and on demand.

Fake problem?

I’m the first to admit that generative AI systems are complex and processor-intensive. Thus, the assumption is that they must rely on highly specialized hardware to perform tasks that were once the exclusive domain of human imagination. People figure that generative AI needs GPUs or even more specialized processing such as quantum computing.

Are those assumptions always right? Is this another specialized system where specialized components are needed at very specialized prices?

GPUs were initially developed for rendering graphics in video games but have become instrumental in AI due to their highly parallel structure. They can perform thousands of operations simultaneously. This aligns perfectly with the tasks required by neural networks, the critical technology in generative AI. That’s a technical fact that people designing and building generative AI systems (like yours truly) should carefully consider.

See also  Atos pushes data sovereignty for the enterprise

Tensor Processing Units (TPUs), on the other hand, are Google’s custom-developed, application-specific, integrated circuits designed explicitly for TensorFlow. TensorFlow is an open-source machine-learning framework that’s been around for a while. TPUs assist in the machine learning processes since they are tailored for forward and backward propagation. These are processes leveraged for training neural networks. I don’t view TPUs as being as much of an issue as GPUs when it comes to cost. However, they are often bound together, so it’s worth a mention here.

Those of you who build and deploy these systems know that no matter what AI framework you’re using, most of the processing and time is spent training the models from gobs and gobs of data. For instance, consider OpenAI’s GPT-4 or Google’s BERT models, which have billions of parameters. Training such models without specialized processors could take an impractical amount of time.

Are specialized processors always needed?

GPUs greatly enhance performance, but they do so at a significant cost. Also, for those of you tracking carbon points, GPUs consume notable amounts of electricity and generate considerable heat. Do the performance gains justify the cost?

CPUs are the most common type of processors in computers. They are everywhere, including in whatever you’re using to read this article. CPUs can perform a wide variety of tasks, and they have a smaller number of cores compared to GPUs.

However, they have sophisticated control units and can execute a wide range of instructions. This versatility means they can handle AI workloads, such as use cases that need to leverage any kind of AI, including generative AI.

See also  How to Trick Generative AI Into Breaking Its Own Rules

CPUs can prototype new neural network architectures or test algorithms. They can be adequate for running smaller or less complex models. This is what many businesses are building right now (and will be for some time) and CPUs are sufficient for the use cases I’m currently hearing about.

How much do you really need to pay?

CPUs are more cost-effective in terms of initial investment and power consumption for smaller organizations or individuals who have limited resources. However, even for enterprises with many resources, they still may be the more cost-effective choice.

Also, AI is evolving. With the recent advancements in AI algorithms, there are new developments like SLIDE (Sub-Linear Deep Learning Engine). This technology claims to train deep neural nets faster on CPUs than on GPUs under certain conditions. They are using hashing techniques and reducing memory access costs.

Also, consider field-programmable gate arrays (FPGAs). These processors can be programmed after manufacturing to perform specific tasks, such as AI, much more efficiently. Also, associative processing units (APUs) specialize in pattern recognition and can handle associative memory tasks, making certain types of neural network applications run faster.

There are many instances where non-GPU processors are much more cost-effective. So why is the answer always GPUs when it comes to generative AI or just AI in general? I’m not sure it needs to be.

I suspect enterprises will spend millions of dollars more than they need to because they feel that the cost justifies the performance gains. This will be both GPU processing consumption within a public cloud, on-premises, and some within edge computers.

See also  Imagination unveils E-Series GPUs for graphics and AI at the edge

The call-out here is not to limit the use of GPUs but to consider what you really need for your specific use case. Most generative AI applications will be small tactical deployments and really won’t need the cost and the carbon impact of GPUs.

 The core job of systems architects, cloud architects, and now generative AI architects is to find the most cost-optimized solution. What configuration of technology will cost the least and provide the most business value at the same time? Perhaps generative AI is an area of forthcoming new development where we can make better and more pragmatic choices. Don’t just follow the hype.

Copyright © 2024 IDG Communications, .

Contents
Fake problem?Are specialized processors always needed?How much do you really need to pay?

Source link

TAGGED: generative, GPUs, Systems
Share This Article
Twitter Email Copy Link Print
Previous Article OpenAI releases new models and lowers API pricing OpenAI releases new models and lowers API pricing
Next Article MY DR NOW Kain Capital Makes Follow-On Investment in MY DR NOW; Total Funding to $60M
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Your Trusted Source for Accurate and Timely Updates!

Our commitment to accuracy, impartiality, and delivering breaking news as it happens has earned us the trust of a vast audience. Stay ahead with real-time updates on the latest events, trends.
FacebookLike
TwitterFollow
InstagramFollow
YoutubeSubscribe
LinkedInFollow
MediumFollow
- Advertisement -
Ad image

Popular Posts

Quorum Cyber Receives Strategic Growth Investment from Charlesbank Capital Partners

Quorum Cyber, an Edinburgh, Scotland, UK-based world cybersecurity agency, acquired a strategic Development funding from…

June 9, 2024

Data quality is key to AI-driven growth

As corporations race to implement AI, many are discovering that mission success hinges instantly on…

September 23, 2025

CyrusOne enters Italian market with first facility in Milan

CyrusOne has introduced plans for a knowledge centre growth positioned within the Municipality of Segrate,…

December 8, 2024

Cybersecurity strategies to uplevel data centre resilience

Sergei Serdyuk, VP of Product Administration at NAKIVO, believes that at the moment’s escalating cyber…

April 1, 2025

Luminary Cloud Raises $115M in Funding

Luminary Cloud, a San Mateo, CA-based cloud-native, computer-aided engineering (CAE) software program supplier, raised $115M…

March 17, 2024

You Might Also Like

atNorth's Iceland data centre epitomises circular economy
Cloud Computing

atNorth’s Iceland data centre epitomises circular economy

By saad
Experimental AI concludes as autonomous systems rise
AI

Experimental AI concludes as autonomous systems rise

By saad
How cloud infrastructure shapes the modern Diablo experience 
Cloud Computing

How cloud infrastructure shapes the modern Diablo experience 

By saad
Supermicro unveil advanced liquid-cooled NVIDIA HGX B300 systems
Power & Cooling

Supermicro unveil advanced liquid-cooled NVIDIA HGX B300 systems

By saad
Data Center News
Facebook Twitter Youtube Instagram Linkedin

About US

Data Center News: Stay informed on the pulse of data centers. Latest updates, tech trends, and industry insights—all in one place. Elevate your data infrastructure knowledge.

Top Categories
  • Global Market
  • Infrastructure
  • Innovations
  • Investments
Usefull Links
  • Home
  • Contact
  • Privacy Policy
  • Terms & Conditions

© 2024 – datacenternews.tech – All rights reserved

Welcome Back!

Sign in to your account

Lost your password?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
You can revoke your consent any time using the Revoke consent button.